KAIST, 인간 후각 뉴런 모방 전자코 ‘뉴로모픽 반도체 모듈’ 개발

유해가스 및 와인 구별하는 ‘전자코’ 구현 기술. 가스성분 인식해 스파이크 신호로 출력 가능

KAIST 전기및전자공학부 최양규 교수와 기계공학과 박인규 교수 공동연구팀이 `인간의 후각 뉴런을 모방한 뉴로모픽 반도체 모듈'을 개발했다고 4일 밝혔다.

인간의 뇌, 시각 뉴런, 그리고 촉각 뉴런을 모방한 뉴로모픽 반도체 모듈을 각각 개발하는 데 성공했던 연구팀은, 인간의 후각 뉴런과 같이 가스 성분을 인식해 스파이크 신호를 출력할 수 있는 뉴로모픽 반도체 모듈을 통해 뉴로모픽 기반의 전자코(eletronic nose)를 구현할 수 있음을 처음으로 보였다.
 

▲ (왼쪽부터) 전기및전자공학부 최양규 교수, 기계공학과 박인규 교수, 전기및전자공학부 한준규 박사과정, 강민구 박사과정(이미지 출처=KAIST)

전기및전자공학부 한준규 박사과정과 강민구 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명 국제 학술지 `어드밴스드 사이언스(Advanced Science)' 2022년 4월 온라인판에 출판됐으며, 후면 표지 논문(Back Cover)으로 선정됐다. (논문명 : Artificial olfactory neuron for an in-sensor neuromorphic nose) 
 

▲ 선정된 논문 표지 (이미지 출처=KAIST)

인공지능을 이용한 후각 인식 시스템은 높은 정확도로 가스를 인식할 수 있어 환경 모니터링, 음식 모니터링, 헬스케어 등 다양한 분야에 걸쳐 유용하게 사용되고 있다.

하지만 이러한 시스템 대부분은 CPU와 메모리가 분리된 구조인 폰노이만 컴퓨터가 필요한 소프트웨어를 기반으로 하므로, 데이터가 CPU와 메모리 사이를 이동할 때 높은 전력이 소모된다. 또한 센서에서 CPU로 데이터가 전송될 때 필요한 변환 회로에서도 추가 전력 소비가 발생한다. 따라서 모바일 또는 사물인터넷(IoT) 장치에 적용되기는 어렵다.

한편, 생물학적 후각 시스템은 감각 세포 자체에서 스파이크 형태로 감각 정보를 전달하고, 이를 뇌에서 병렬적으로 처리함으로써 낮은 전력 소비만으로 가스를 판별할 수 있다. 따라서 저전력 후각 시스템을 구축하기 위해, 생물학적 후각 시스템을 모방해 센서 단에서 스파이크 형태로 정보를 전달하는 `인 센서 컴퓨팅(In-Sensor Computing)' 기반 뉴로모픽 후각 시스템이 주목을 받고 있다.

이러한 뉴로모픽 후각 시스템을 구현하기 위해서는 인간의 후각 뉴런처럼 화학 신호를 스파이크 형태의 전기 신호로 변환해주는 구성 요소가 필요하다. 하지만, 일반적인 가스 센서는 이러한 기능을 수행할 수 없다.
 
 

▲ 후각 뉴런 개념도(이미지 출처=KAIST)


연구팀은 반도체식 금속산화물 기반 가스 센서와 단일 트랜지스터 기반 뉴런 소자를 이용해, 가스를 인식해 스파이크 신호를 출력할 수 있는 뉴로모픽 반도체 모듈을 개발했다.

연구팀은 제작된 뉴로모픽 반도체 모듈을 바탕으로 유해가스를 구분할 수 있는 가스 인식 시스템과 와인을 구분할 수 있는 전자 소믈리에 시스템을 구축했다. 특히, 여러 가지 가스 분자가 섞여 있어 구분이 힘든 와인을 뉴로모픽 시스템을 이용해서 구분할 수 있음을 보인 것에서 그 의미가 크다.

연구를 주도한 한준규 박사과정은 "개발된 뉴로모픽 반도체 모듈은 전자코에 적용되어 사물인터넷(IoT) 분야, 환경 모니터링, 음식 모니터링, 헬스케어 등에 유용하게 사용될 수 있을 것으로 기대된다ˮ며, "이는 `인-센서 컴퓨팅(In-Sensor Computing)' 시대를 앞당기는 발판이 될 것이다ˮ고 연구의 의의를 설명했다. 

한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 중견연구사업, 국민위해인자대응기술개발사업 및 반도체설계교육센터의 지원을 받아 수행됐다. 

글. 이지은 기자 smile20222@brainworld.com | 사진 및 자료출처 = 한국과학기술원(KAIST)

ⓒ 브레인미디어 무단전재 및 재배포 금지

인기 뉴스

설명글
인기기사는 최근 7일간 조회수, 댓글수, 호응이 높은 기사입니다.